Protein Programming

Philippe Larve, Research engine, Alcatel-Lucent Villarceaux, December 2007

Abstract—Within the context of application building with
object-oriented programming (which is today thendtad for
application development) this paper presents a rew
simpler way to facilitate / automate the writingatésses and
applications. This simple way is the use of a cgdeerator
based on the concept of a Reduced
Programming (RISP) driven by only 4 types of instions :
“access”, “compute”, “test” and “generate” (i.e @, T, G, the
four amino-acid pieces that build proteins).

I. WHAT IS THE PROBLEM TO SOLVE

Within the context of modern application buildingth
object-oriented programming [1], (which is todag standard
for application development [5]) the technical devb to
solve is to facilitate / to automate the writing @asses and
applications by the easiest way as possible.

The best existing solution today is to write thelagation

Instruction Set

A for "access", in order to access the data stored
the classes of the application;

C for "compute”, in order to calculate values/resul
to be stored inside classes or to be exchanged
between classes;

T for "test", in order to evaluate conditions and
determine what new actions have to be done;

G for "generate", in order to generate events ltemt
classes.

So, an application can be seen as — an applicitiora set
of RISP instructions A, C, T, G that can be takernnputs by
a code generator able to build a complete and dabipi
application from only these four types of stateraent

[ll. DESCRIPTION OF ONE EMBODIMENT OF THE

SOLUTION
Within the context of RISP "protein programmingin

by using software development environments (Jav&,SDapplication can be seen as a "polypeptide”, maddiffefrent

Eclipse, Visual Studio, etc) and making big effagawrite the
code of classes [3], [4].

IILWHAT IS THE MAIN IDEA OF THE SOLUTION WE
PROPOSR

A long practice of application programming leads to
observe that only four kind of instructions arefukéo write
the code of a given program, no matter how complex we
needaccessors to get data and values stored within the class
of the application; we have twmpute those data, in order to
produce new values and results — which are orditfeymain
objective of the application; we netsts, in order to evaluate
the results we get or the next step of the algaritand to
determine the new action to trigger; and finally need to

generate events from a given class to others, in order to
execute the procedures and methods embedded ie thes

classes. See also Steve Mellor [7], p.125.

So, the necessity of these four kinds of actienslaser to
the structure of biological proteins. Proteins, afgb DNA —
desoxy-ribonucleic acid [2] - are assemblies afrfe and
only four - pieces, the amino-acids Adenine, Cyiesi
Thymine and Guanine (A, C, T, G) [6].

According to this natural disposition, the baglea of the

Protein Programming solution is to propose a code generator
based on a Reduced Instruction Set Programming (RIS

driven by only four types of instructions:

classes (the "peptides") that store data and coritaienby
events.

An event is a call of a public method of a clasgntually
carrying parameters. In the biological world, phote
communicate by molecular exchanges, through specifi
receptors and actuators.

The RISP protein code generator uses only 4 ictibns,
expressed as predicates: A() for accessors, C()
computations, T() for tests and G() for generagugnts.

for

es

A = access. When a peptide (a class) wants to sicces
the molecule (data) "data_name" stored in the other
peptide "class_name", the Accessor function is:used
A(cl ass_nane, data_nane);

C = calculate. When a new molecule (a calculation)
is needed, the Compute function is used: :
C(result, operandl, operator,

oper and?2) ;

T = test. The evaluation of a condition is donehwit
the T() function T(condi ti on,

action_if_true, action_if_false);

G = generate. When a peptide (a class) wants to
activate the function "method_name" of another
peptide "class_name" with the molecule "parameter”,
the function G() is usedQ cl ass_nare,

nmet hod_nane, paraneter);

3.

4.

This notation is the entry point for the proteindeo

generator, that produces the final code of theiegtbn, in

Phili Larvet h i t Alcateleit Bell Lab Java for example.
ilippe Larvet was research engineer at Alca ell Labs, . . . L
Villarceaux (France). Author of numerous publicaicaand patents, he works This RISP ACTG notation, simple and generic, iseéplifor

now as independent consultant in Bergerac (Franeepail: phlarvet@ bUilding applications, as well as for learning aijeriented
gmail.com. LinkedIn https://www.linkedin.com/inftippe-larvet-9ba391/



programming and teaching the basic principles ofeaib
oriented development [6]. The notation allows diéscg an
application (a polypeptide) through its sequenciikg,a DNA
or a protein sequencing (ACTG-AACG-ACCG-ACTG-etc.).

Within the context of the ATM example, the formal
descriptions of some "peptides” in terms of ACTQation
are depicted in the following table.

TABLE |

FORMAL DESCRIPTION IN ACTG NOTATION, OF SOME'PEPTIDES' FOR THE
ATM APPLICATION EXAMPLE

IV. EXAMPLE OF A SIMPLEPROTEIN PROGRAMMING
APPLICATION

In order to illustrate our solution, we have chodensimple
problem of using an ATM (automated teller machiras),it is
described in Wikipedia : see the following link

http://en.wikipedia.org/wiki/Automated_teller mank)

"An automated teller machine (ATM) is a computerized
telecommunications device that provides the customers of a
financial ingtitution (a bank) with access to financial
transactions in a public space without the need for a human
clerk or bank teller. On most modern ATMs, the customer is
identified by inserting a plastic card with a magnetic stripe or
a plastic smartcard with a chip that contains a unique card
number and some security information, such as an expiration
date. Security is provided by the customer entering a personal
identification number (PIN). Using an ATM, customers can
access their bank accounts in order to make cash withdrawals
(or credit card cash advances) and check their account
balances".

Following this example, we can describe a simplatgin-
application able to allow a customer to make a dviwal,
according to the following use case:
the customer introduces his card in the ATM
the ATM asks the customer to enter his secret cod
(PIN code)
the customer enters his code
the ATM (card reader) checks the code
if the code is wrong, after 3 tries, the card isimeed
to the user
if the code is correct, the ATM asks the custoroer t
enter the amount of his withdrawal

%

to get

the ATM checks onto the card if the withdrawal
amount is authorized

the ATM, via a bank interface, asks the customer's
account if the bank balance allows the withdrawal
if these conditions are OK, the banknotes can be
distributed

the customer enters the amount of money he wishes

card {
dat a:
secret _code=1234;

}

card_reader {

dat a:
code_i nput ;
net hods:
introduce_card() {
G(di al ogue, "Your card is being read");

G(card_reader, check_code);

}

check_code() {
G(di al ogue, "Please enter your PIN code");
C(code_i nput, input());
T(code_i nput ==A(card, secret_code),

G(code_OK), G(code KO );
}

code_X {
G(ATM ask_anount);
}

code_KQ() {
G di al ogue, "Wong code");
G(card_reader, check_code);

}

return_card() {

G(di al ogue, "Please take your card to get
your noney");
G(slot, distribute, A(ATM

wi t hdrawal _anount) );

}
}

slot {
dat a:
nb_of _banknot es;

net hods:
di stribute(paranmeter) {
C(nb_of _banknot es=par anet er/ A( banknot e,
val ue) );
G di al ogue, "Here are your noney (nb of
banknotes = "+nb_of banknotes+")" );

}
}

The analysis of this use case gives us the acliasses
composing the application (the "polypeptide"): camhrd
reader, bank interface, ATM, distribution slot.

The exchanges of events between these elementg tlo
implement the use case:

1. every "peptide" (every class) has its own clediteamino-
acids" (the instructions A, C, T, or G) describitgyfunctions
(the methods of the class);

2. the assembly of all these peptides composeat€ipt’ = a
"polypeptide" = an application.

From the ACTG notation, the protein code genenatoduces
the Java class code for the "peptide" card-redddris shown
in Table II.



TABLE Il
JAVA CLASS GENERATED BYPROTEIN GENERATOR FROM THE DESCRIPTION IN
TABLE |

cl ass card_reader {
/1 dat a:
i nt code_i nput;

/'l instances (generated)
di al ogue thedi al ogue;
card thecard,;

ATM t heATM
sl ot theslot;

[/ constructor (generated)
public card_reader() {
t hedi al ogue = new di al ogue();
thecard = new card();
t heATM = new ATM) ;
theslot = new slot();

}

/| met hods:
public void introduce_card() {
t hedi al ogue. di spl ay("Your card is being
read");
this. check_code();
}

public void check_code() {
t hedi al ogue. di spl ay("Pl ease enter your PIN
code");
code_i nput = input();
i f (code_i nput ==t hecard. secret _code)
this.code_OK();
el se
this.code_KQO();
}

public void code_OK() {
t heATM ask_amount () ;
}

public void code_KQ() {
t hedi al ogue. di spl ay("Wong code");
this. check_code();

}

public void return_card() {
t hedi al ogue. di spl ay("Pl ease take your card
to get your noney");
thesl ot. distribute(
t heATM wi t hdr awal _anount) ;

V. DIFFERENCES WITH OTHER BIOLOGICAL
ALGORITHMIC APPROACHES

In order to distinguish the proposed solution frifra state-
of-the-art, we indicate here some differences wditer
biological approaches like genetic algorithms, akoetworks
and populationist ant-programming.

V.1 Genetic algorithms [8]

Genetic algorithms (or evolutionary algorithms) digg to
the family of meta-heuristic algorithms, whose #im is to
get a close solution, in an acceptable time, to@timization
problem, when no exact method is known to solveptioblem
in a reasonable time. By using the concepts of geme

mutation, genetic algorithms use the notion of ratu
selection and evolution, developed during the Xettary by
Charles Darwin, and apply these concepts to a ptipal of
potential solutions to the given problem. So, thecpssing
gets closer, by successive "jumps", to an acceptaiiution.

Our solution is different because we don't usectivecept of
gene, nor mutation, nor natural selection, nor eah, and
the aim is not an optimization but a means to pcedunore
easily an executable program within the scope geath
oriented programming.

V.2 Artificial Neural networks [9]

An Artificial Neural Network is a computation modehose
the design is very schematically inspired from
functionning of true neurons (human or not). Thairak
networks are generally optimized by statistic-tyjparning
methods, so they are located firstly in the fanofystatistical
applications, which they enrich with a set of payads
allowing to generate wide functional spaces, flexiland
partially structured, and secondly in the family Aitifical
Intelligence (Al) methods, which they enrich byoaling to
take decisions that lean more on the perception trathe
formal logical reasoning.

Our solution is different because we don't usectivecept of
neuron, nor statistic, and the Protein Programrigngt an Al
method: the aim is not a possibility to fire a demn, but a
means to ease the production of executable progreth
the scope of object-oriented programming.

V.3 Ant programming [10]

The works on ant-programming develop this conceijth w
the goal of gaining a deeper understanding on attdng
optimization, a heuristic method for combinatorial
optimization problems inspired by the foraging beba of
ants.

Indeed, ant programming allows a deeper insight the
general principles underlying the use of an iterakéonte
Carlo approach for the multi-stage solution of enbmatorial
optimization problem. Such an insight is intendedotovide
the designer of algorithms with new categoriese®pressive
terminology, and tools for dealing effectively witthe
peculiarities of the problem at hand. Ant-programgni
searches for the optimal policy of a multi-stagecisien
problem to which the original combinatorial problems
reduced.

Our solution is different because we don't usectivecept of
ant, nor colony, nor optimization. Our aim is nat leeuristic
for combinatorial optimization problems, but justreeans to
ease the production of executable programs withénsicope
of object-oriented programming.

VI. CONCLUSION

We have presented in this paper an approach amdphes
notation that allow developing engineers to program
application without writing complex lines of codgy using a
very reduced set of instructions. Indeed, only foypes of
instructions are necessary to write any kind ofgpam or
complex application.

the



From this work is born a patentD&vice and method for  [4]
building compilable and executable applications from
specifications expressed by classes’, US 20090178023 Al. [5]

The main concept developed in this patent is theviing:

A device (D) is intended for building compilable dan [6]
executable applications (AP) from high-level repreations
of classes, each class storing data and/or impliéngeat least
one public function and/or being able to activatéeast one
chosen public function of at least one other clagss device
(D) comprises a generation means (GM) arrangedoi) f[8]

[7]

producing “new” class representations in a chosen
programming language from formal representations of
specification classes expressing a specificationS) (A [g]

describing an application (AP) to be built, eacassl formal
representation being written in a high-level synibtanguage
comprising a class declaration, a data declaratofunction
declaration, and a restricted group of instructigges chosen
among four basic types comprising respectivelyrircttons
for accessing a chosen stored data of a chosers, clas
instructions for computing a chosen data from aseho
operator and possibly from some given input paran(),
instructions for testing if a chosen class datasfes to a
chosen condition, and instructions for generatin@etivation

of a chosen public function of any class possibithwat least
one chosen data parameter, and ii) for assembtieget new
class representations to build a compilable anccigrble
application (AP) corresponding to the specificat{s).

AS
° |
-y,
| N
l AM
ST |
SM N
GM
v
AP
REFERENCES

[1] John C. Mitchell, Concepts in programming languages, Cambridge
University Press, 2003, ISBN 0-521-78098-5, p.2[Z8ts: Dynamic
dispatch, abstraction, subtype polymorphism, ahdritance.

J. D. Watson et F. H. C. Crickjolecular Sructure of Nucleic Acids: A
Structure for Deoxyribose Nucleic Acid, Nature, vol. 171, no 435@5
avril 1953, p. 737-738 (PMID 13054692, DOI 10.1038/737a0,
Bibcode 1953Natur.171..737W.

John C. Mitchell,Concepts in programming languages, Cambridge
University Press, 2003, ISBN 0-521-78098-5, p.278.

(2]

(3]

Pierce, Benjamin,Types and Programming Languages, MIT Press,
2002, ISBN 0-262-16209-1, section 18.1 "What is é@bpPriented
Programming?"

Grady BoochObject-Oriented Analysis and Design With Applications,
Addison-Wesley, ISBN 0-8053-5340-2, I5th Printiggcember 1998.
Nomenclature Committee of the International UnidnB@chemistry
(NC-1UB), Nomenclature for Incompletely Specified Bases in Nucleic
Acid Sequences [archive], sur IUBMB [archive], 1984.

Sally Shlaer, Stephen J. Melldpject Lifecycles, Modeling the World
in States, Yourdon Press Computing Series, Prentice Hall, 189BN
0-13-629940-7 p.12%;0rming and Assigning Processes.

Eiben, A. E. et alGenetic algorithms with multi-parent recombination.
PPSN lII: Proceedings of the International Confeeenn Evolutionary
Computation. The Third Conference on Parallel RnobBolving from
Nature: 78—-87LSBN 3-540-58484-6 1994

S. Hochreiter., Untersuchungen zu dynamischen neuronalen
Netzen, Diploma thesis. Institut f. Informatik, Technigch/niv. Munich.
Advisor: J. Schmidhuber, 1991.

[10] Yuehui Chen & Ajith Abraham, Tree-Structure Based Hybrid

Computational Intelligence, Intelligent Systems Reference Library,
Springer-Verlag Berlin Heidelberg, 2006, pp. 12%@vantes.

[11] Paul T. Ward, Stephen J. Mell&yuctured Development for Real-Time

Systems, Yourdon Press, Prentice Hall, 1986, ISBN 0-137&44,
Vol.l, Introduction & Tools.



